Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 100
1.
Cell Death Discov ; 10(1): 233, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744851

A key factor contributing to resistance in immune checkpoint blockade (ICB) therapies is CD8+ T-cell tolerance in the tumor microenvironment (TME), partly resulting from upregulating coinhibitory receptors. Here, we describe the role of PGRN as a coinhibitory molecule that modulates the antitumor response of CD8+ T cells, thus presenting a novel immunosuppressive target for lung cancer. The in vivo subcutaneous transplanted lung cancer model showed that PGRN expression was elevated on CD8+ T cells that infiltrated transplanted lung cancers. Furthermore, PGRN deficiency was found to specifically encourage the infiltration of CD8+ T cells, enhance their proliferation, migration, and activation, and resist apoptosis, ultimately inhibiting tumor growth. This was achieved by PGRN knockout, increasing the production of T cell chemokine CCL3, which boosts the antitumor immune response induced by CD8+ T cells. Critically, the PD-L1 inhibitor exhibited a synergistic effect in enhancing the antitumor response in PGRN-/- mice. In summary, our findings highlight the significance of PGRN as a novel target for boosting CD8+ T cells antitumor immunity and its potential to overcome the resistance in ICB therapy.

2.
Drug Des Devel Ther ; 18: 1369-1384, 2024.
Article En | MEDLINE | ID: mdl-38681210

Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders without available pharmacological therapies. Dynasore is a cell-permeable molecule that inhibits GTPase activity and exerts protective effects in several disease models. However, whether dynasore can alleviate lipopolysaccharide (LPS)-induced ALI is unknown. This study investigated the effect of dynasore on macrophage activation and explored its potential mechanisms in LPS-induced ALI in vitro and in vivo. Methods: Bone marrow-derived macrophages (BMDMs) were activated classically with LPS or subjected to NLRP3 inflammasome activation with LPS+ATP. A mouse ALI model was established by the intratracheal instillation (i.t.) of LPS. The expression of PYD domains-containing protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD) protein was detected by Western blots. Inflammatory mediators were analyzed in the cell supernatant, in serum and bronchoalveolar lavage fluid (BALF) by enzyme-linked immunosorbent assays. Morphological changes in lung tissues were evaluated by hematoxylin and eosin staining. F4/80, Caspase-1 and GSDMD distribution in lung tissue was detected by immunofluorescence. Results: Dynasore downregulated nuclear factor (NF)-κB signaling and reduced proinflammatory cytokine production in vitro and inhibited the production and release of interleukin (IL)-1ß, NLRP3 inflammasome activation, and macrophage pyroptosis through the Drp1/ROS/NLRP3 axis. Dynasore significantly reduced lung injury scores and proinflammatory cytokine levels in both BALF and serum in vivo, including IL-1ß and IL-6. Dynasore also downregulated the co-expression of F4/80, caspase-1 and GSDMD in lung tissue. Conclusion: Collectively, these findings demonstrated that dynasore could alleviate LPS-induced ALI by regulating macrophage pyroptosis, which might provide a new therapeutic strategy for ALI/ARDS.


Acute Lung Injury , Inflammasomes , Lipopolysaccharides , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Pyroptosis/drug effects , Mice , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Inflammasomes/drug effects , Male , Dose-Response Relationship, Drug , Disease Models, Animal , Cells, Cultured , Structure-Activity Relationship
3.
Article En | MEDLINE | ID: mdl-38619962

Graph convolutional networks (GCNs) have been widely used in skeleton-based action recognition. However, existing approaches are limited in fine-grained action recognition due to the similarity of interclass data. Moreover, the noisy data from pose extraction increase the challenge of fine-grained recognition. In this work, we propose a flexible attention block called channel-variable spatial-temporal attention (CVSTA) to enhance the discriminative power of spatial-temporal joints and obtain a more compact intraclass feature distribution. Based on CVSTA, we construct a multidimensional refinement GCN (MDR-GCN) that can improve the discrimination among channel-, joint-, and frame-level features for fine-grained actions. Furthermore, we propose a robust decouple loss (RDL) that significantly boosts the effect of the CVSTA and reduces the impact of noise. The proposed method combining MDR-GCN with RDL outperforms the known state-of-the-art skeleton-based approaches on fine-grained datasets, FineGym99 and FSD-10, and also on the coarse NTU-RGB + D 120 dataset and NTU-RGB + D X-view version. Our code is publicly available at https://github.com/dingyn-Reno/MDR-GCN.

4.
Neuropsychiatr Dis Treat ; 20: 765-775, 2024.
Article En | MEDLINE | ID: mdl-38577632

Purpose: The SARS-CoV-2 infection cases are increasing rapidly in neuro-intensive care units (neuro-ICUs) at the beginning of 2023 in China. We aimed to characterize the prevalence, risk factors, and prognosis of critically ill patients treated in neuro-ICUs. Materials and Methods: In the prospective, multicenter, observational registry study, critically ill patients with intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), and traumatic brain injury (TBI) admitted to eight Chinese neuro-ICUs between Feb 16, 2023, to Apr 30, 2023 were enrolled for the study. Mortality and ICU stay day were used as the primary outcomes. Results: 131 patients were finally included and analyzed (mean age 60.36 years [SD 13.81], 64.12% male, 39.69% SARS-CoV-2 infected). The mortality is higher in the SARS-CoV-2 infection group without statistical signification (7.69% vs 5.06%, p>0.05). The length of stay (LOS) in neuro-ICUs was significantly longer among the SARS-CoV-2 infection patients (7(1-12) vs 4(1-8), p<0.01), with increased viral pneumonia occurrence (58.54% vs 7.32%, p<0.01). SARS-CoV-2 infection, surgery, and low GCS scores were independent risk factors for prolonged LOS, and respiratory/renal failure were independent risk factors for death. Conclusion: Based on the present neuro-ICU cohort, SARS-CoV-2 infection was a significant risk for the prolonged LOS of neuro-critically ill patients. Trial Registration: Registered with Chictr.org.cn (ChiCTR2300068355) at 16 February 2023, Prospective registration. https://www.chictr.org.cn/showproj.html?proj=188252.

5.
Nat Metab ; 6(1): 2-5, 2024 Jan.
Article En | MEDLINE | ID: mdl-38233680
6.
Mol Imaging Biol ; 26(1): 138-147, 2024 Feb.
Article En | MEDLINE | ID: mdl-38114709

PURPOSE: The data acquisition of drug metabolism analysis requires a lot of time and animal resources. However, there are often many deviations in the results of pharmacokinetic analysis. Conventional methods cannot measure the blood drug concentration data in multiple tissues at the same time, and the data is obtained by in vitro measurement, which produces time errors, in vitro data errors, and individual differences between animals. In the analysis of pharmacokinetic parameters, it will seriously affect the pass rate of clinical trials of R&D drugs and the accuracy of the dosing schedule. To the best of our knowledge, we have not found the study of in vivo blood drug concentration using multi-channel equipment. Therefore, the purpose of this paper is to build a set of multi-organ monitoring and analysis instruments for synchronously monitoring the metabolism of drugs in various tissues of small animals, so as to obtain real in vivo data of blood drug concentration in real time. PROCEDURES: Using the fluorescence properties and laser-induced fluorescence principle of drugs, we designed six channels to monitor the changes of fluorescence-labeled drugs in their main metabolic organs, a multi-channel calibration method was proposed to improve the accuracy of the time-division multiplexing, the real-time collection of drug concentration in vivo is realized, and the drug metabolism curve in vivo can be observed. RESULTS: The instrument satisfies the collection of small doses of drugs such as microgram; the detection sensitivity can reach 10 ng/ml, and can monitor and collect the drug metabolism of multiple small animal tissues at the same time, which greatly reduces the use of animals, reduces the differences between individuals, and reduces consumption cost and improve the detection efficiency of parameters, and obtain data information that is closer to the real biology. CONCLUSION: The real-time continuous monitoring and data collection of the drug metabolism in the plasma of living small animals and the important organs such as kidney, liver, and spleen were realized. The research and development of new drugs and clinical research have higher practical value.


Liver , Humans , Animals , Fluorescence
7.
Biomimetics (Basel) ; 8(8)2023 Dec 05.
Article En | MEDLINE | ID: mdl-38132530

As human-robot interaction and teleoperation technologies advance, anthropomorphic control of humanoid arms has garnered increasing attention. However, accurately translating sensor-detected arm motions to the multi-degree freedom of a humanoid robotic arm is challenging, primarily due to occlusion issues with single-sensor setups, which reduce recognition accuracy. To overcome this problem, we propose a human-like arm control strategy based on multi-sensor fusion. We defined the finger bending angle to represent finger posture and employed a depth camera to capture arm movement. Consequently, we developed an arm movement tracking system and achieved anthropomorphic control of the imitation human arm. Finally, we verified our proposed method's effectiveness through a series of experiments, evaluating the system's robustness and real-time performance. The experimental results show that this control strategy can control the motion of the humanoid arm stably, and maintain a high recognition accuracy in the face of complex situations such as occlusion.

8.
Bioengineering (Basel) ; 10(11)2023 Oct 24.
Article En | MEDLINE | ID: mdl-38002367

The main goal of this research is to develop a highly advanced anthropomorphic control system utilizing multiple sensor technologies to achieve precise control of a robotic arm. Combining Kinect and IMU sensors, together with a data glove, we aim to create a multimodal sensor system for capturing rich information of human upper body movements. Specifically, the four angles of upper limb joints are collected using the Kinect sensor and IMU sensor. In order to improve the accuracy and stability of motion tracking, we use the Kalman filter method to fuse the Kinect and IMU data. In addition, we introduce data glove technology to collect the angle information of the wrist and fingers in seven different directions. The integration and fusion of multiple sensors provides us with full control over the robotic arm, giving it flexibility with 11 degrees of freedom. We successfully achieved a variety of anthropomorphic movements, including shoulder flexion, abduction, rotation, elbow flexion, and fine movements of the wrist and fingers. Most importantly, our experimental results demonstrate that the anthropomorphic control system we developed is highly accurate, real-time, and operable. In summary, the contribution of this study lies in the creation of a multimodal sensor system capable of capturing and precisely controlling human upper limb movements, which provides a solid foundation for the future development of anthropomorphic control technologies. This technology has a wide range of application prospects and can be used for rehabilitation in the medical field, robot collaboration in industrial automation, and immersive experience in virtual reality environments.

9.
Phys Chem Chem Phys ; 25(42): 28744-28749, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37850355

Silicon luminescence, due to silicon being abundant, non-toxic and harmless, is a topic of pivotal importance in optoelectronics and biological imaging. However, a major challenge in developing high-efficiency silicon light sources is the relatively weak allowable transitions. This study focuses on single atom-doped silicon nanocrystals (Si NCs) and theoretically investigates the emission behavior of single atoms within a tetrahedral coordination field. Doping a single atom in Si NCs can result in a ∼102 times improvement at least in the squared transition dipole moment (TDM2), and induce a spectral shift towards near- and mid-infrared wavelengths. These findings offer a strong foundation for designing Si NCs for on-chip optical communication and single photon emitters.

10.
Front Cell Infect Microbiol ; 13: 1194495, 2023.
Article En | MEDLINE | ID: mdl-37674577

Background: The transcriptomic studies targeting circular RNAs (circRNAs) in bronchoalveolar lavage fluid (BALF) exosomes of acute respiratory distress syndrome (ARDS) patients caused by severe pneumonia have rarely been reported. This study aimed to screen and validate abnormally expressed circRNAs in exosomes from BALF of patients with ARDS caused by severe pneumonia and then evaluate the diagnostic values of these circRNAs for ARDS. Method: BALF was collected from four patients with ARDS caused by severe pneumonia and four healthy subjects. CircRNA expression profile was obtained by microarray analysis in BALF exosomes of the discovery cohort. The differentially expressed circRNAs in BALF exosomes were verified by real-time quantitative PCR (RT-qPCR) and underwent competitive endogenous RNA (ceRNA) network construction and functional enrichment analysis. Results: A total of 629 circRNAs were differentially expressed in BALF exosomes between ARDS patients and healthy subjects. Nine differentially expressed circRNAs were validated by RT-qPCR, and seven were consistent with the results of microarray analysis. CeRNA network analysis was performed for hsa_circRNA_002809, hsa_circRNA_042882, and hsa_circRNA_104034. Functional enrichment analysis showed that the target genes were mainly associated with hypoxia-induced damage, inflammatory response, and the HIF-1 signaling pathway. Hsa_circRNA_042882 and hsa_circRNA_104034 can be regarded as promising diagnostic biomarkers for patients with ARDS caused by severe pneumonia, with remarkable sensitivity and specificity of the area under the curve of 0.8050 and 1 or 0.835 and 0.799, respectively. Conclusion: This study obtained circRNA expression profiles of ARDS patients, and hsa_circRNA_042882 and hsa_circRNA_104034 were regarded as promising diagnostic biomarkers for patients with ARDS caused by severe pneumonia.


Exosomes , Pneumonia , Respiratory Distress Syndrome , Humans , RNA, Circular , Bronchoalveolar Lavage Fluid , Pneumonia/diagnosis , Respiratory Distress Syndrome/diagnosis , Biomarkers
11.
Acta Biomater ; 169: 19-44, 2023 10 01.
Article En | MEDLINE | ID: mdl-37517617

Titanium (Ti) and Ti alloys are commonly used in dental implants, which have good biocompatibility, mechanical strength, processability, and corrosion resistance. However, the surface inertia of Ti implants leads to delayed integration of Ti and new bone, as well as problems such as aseptic loosening and inadequate osseointegration. Magnesium (Mg) ions can promote bone regeneration, and many studies have used Mg-containing materials to modify the Ti implant surface. This systematic review summarizes the methods, effects, and clinical applications of surface modification of Ti implants with Mg-containing coatings. Database collection was completed on Janury 1, 2023, and a total of 29 relevant studies were ultimately included. Mg can be compounded with different materials and coated to the surface of Ti implants using different methods. In vitro and in vivo experiments have shown that Mg-containing coatings promote cell adhesion and osteogenic differentiation. On the one hand, the surface roughness of implants increases with the addition of Mg-containing coatings, which is thought to have an impact on the osseointegration of the implant. On the other hand, Mg ions promote cell attachment through binding interactions between the integrin family and FAK-related signaling pathways. And Mg ions could induce osseointegration by activating PI3K, Notch, ERK/c-Fos, BMP-4-related signaling pathways and TRPM7 protein channels. Overall, Mg-based coatings show great potential for the surface modification of Ti implants to promote osseointegration. STATEMENT OF SIGNIFICANCE: The inertia surface of titanium (Ti) implants leads to delayed osseointegration. Magnesium (Mg) ions, known for promoting bone regeneration, have been extensively studied to modify the surface of Ti implants. However, no consensus has been reached on the appropriate processing methods, surface roughness and effective concentration of Mg-containing coatings for osseointegration. This systematic review focus on the surface modification of Ti implants with Mg-containing compounds, highlighting the effects of Mg-containing coatings on the surface properties of Ti implants and its associated mechanisms. Besides, we also provide an outlook on future directions to promote the clinical application of Mg-modified implants.


Osseointegration , Osteogenesis , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Ions/pharmacology , Magnesium/pharmacology , Surface Properties , Titanium/pharmacology , Titanium/chemistry
12.
J Phys Chem Lett ; 14(24): 5580-5585, 2023 Jun 22.
Article En | MEDLINE | ID: mdl-37307140

Colloidal CsPbX3 (X = Br, Cl, or I) perovskite nanocrystals (PNCs) have emerged as low-cost, high-performance light-emitting materials, whereas the toxicity of lead limits their applications. Europium halide perovskites offer promising alternatives to lead-based perovskites due to their narrow spectral width and high monochromaticity. Nonetheless, the photoluminescence quantum yields (PLQYs) of CsEuCl3 PNCs have been very low (∼2%). Herein, Ni2+-doped CsEuCl3 PNCs have been first reported, exhibiting bright blue emission centered at 430.6 ± 0.6 nm with a full width at half-maximum of 23.5 ± 0.3 nm and a PLQY of 19.7 ± 0.4%. To the best of our knowledge, this is the highest PLQY value reported for CsEuCl3 PNCs so far, an order of magnitude higher than in previous work. DFT calculations demonstrate that Ni2+ enhances PLQY by concurrently increasing the oscillator strength and removing Eu3+ which hinders the photorecombination process. B-site doping offers a promising approach to enhance the performance of lanthanide-based lead-free PNCs.

13.
Nat Metab ; 5(5): 804-820, 2023 05.
Article En | MEDLINE | ID: mdl-37188821

Glycolysis is essential for the classical activation of macrophages (M1), but how glycolytic pathway metabolites engage in this process remains to be elucidated. Glycolysis leads to production of pyruvate, which can be transported into the mitochondria by the mitochondrial pyruvate carrier (MPC) followed by utilization in the tricarboxylic acid cycle. Based on studies that used the MPC inhibitor UK5099, the mitochondrial route has been considered to be of significance for M1 activation. Using genetic approaches, here we show that the MPC is dispensable for metabolic reprogramming and activation of M1 macrophages. In addition, MPC depletion in myeloid cells has no impact on inflammatory responses and macrophage polarization toward the M1 phenotype in a mouse model of endotoxemia. While UK5099 reaches maximal MPC inhibitory capacity at approximately 2-5 µM, higher concentrations are required to inhibit inflammatory cytokine production in M1 and this is independent of MPC expression. Taken together, MPC-mediated metabolism is dispensable for the classical activation of macrophages and UK5099 inhibits inflammatory responses in M1 macrophages due to effects other than MPC inhibition.


Mitochondrial Membrane Transport Proteins , Monocarboxylic Acid Transporters , Mice , Animals , Mitochondrial Membrane Transport Proteins/genetics , Monocarboxylic Acid Transporters/metabolism , Mitochondria/metabolism , Glycolysis , Macrophages/metabolism
14.
Neurochem Res ; 48(9): 2870-2880, 2023 Sep.
Article En | MEDLINE | ID: mdl-37204549

A growing body of evidence has shown that seizure can trigger inflammatory cascades through increasing the expression of several inflammatory cytokines. It has been proved that peroxisome proliferator-activated receptor-γ agonists have immunomodulatory, anti-inflammatory, and neuroprotective effects beyond the putative hypoglycemic effects. Thus, we investigated the inhibitory effect of rosiglitazone on the development of pentylenetetrazol (PTZ)-induced kindling via affecting the inflammatory pathway. Male C57BL/6 mice were randomly divided into vehicle group (0.1% DMSO), PTZ-group and rosiglitazone-PTZ-group. Kindling was induced by the administration of PTZ (40 mg/kg, i.p) every other day and mice were observed for 20 min after each PTZ injection. Twenty-four hours after the last dose, animals were euthanized and hippocampus was isolated. The level of Malondialdehyde (MDA), Superoxide Dismutase (SOD), and Catalase (CAT) activity were quantified in hippocampus by biochemical methods. The protein levels of IL-1ß, IL-6, IL-10, IFN-γ, TNF-α, caspase-3, iNOS, PPAR-γ, Bcl-2, or Bax factors were measured with western blotting. Also, the quantitative real-time PCR were used to evaluate the mRNA expression of those factors. Pretreatment with rosiglitazone significantly prevented the progression of kindling in comparison with control group. The rosiglitazone significantly decreased the MDA level and increased the CAT, and SOD levels in the rosiglitazone treated mice compared to those in the PTZ group (P < 0.01). Using real-time PCR and Western blotting assay, similar results were obtained. The expression levels of IL-1ß, IL-6, IL-10, IFN-γ, TNF-α, Bax or PPAR-γ were significantly changed in the brain. The results of this study suggest that effect of rosiglitazone may be crucial in its ability to protect against the neuronal damage caused by PTZ induced seizure.


Kindling, Neurologic , Pentylenetetrazole , Animals , Male , Mice , Antioxidants/pharmacology , bcl-2-Associated X Protein/metabolism , Cytokines/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Mice, Inbred C57BL , Oxidative Stress , Pentylenetetrazole/toxicity , PPAR gamma/metabolism , PPAR-gamma Agonists , Pyroptosis , Rosiglitazone/pharmacology , Seizures/chemically induced , Seizures/drug therapy , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Biomimetics (Basel) ; 8(2)2023 Apr 20.
Article En | MEDLINE | ID: mdl-37092421

Sensor fusion is a technique that combines information from multiple sensors in order to improve the accuracy and reliability of the data being collected. In the context of teleoperation control of an anthropomorphic robotic arm, sensor fusion technology can be used to enhance the precise control of anthropomorphic robotic arms by combining data from multiple sensors, such as cameras, data gloves, force sensors, etc. By fusing and processing this sensing information, it can enable real-time control of anthropomorphic robotic arms and dexterous hands, replicating the motion of human manipulators. In this paper, we present a sensor fusion-based teleoperation control system for the anthropomorphic robotic arm and dexterous hand, which utilizes a filter to fuse data from multiple sensors in real-time. As such, the real-time perceived human arms motion posture information is analyzed and processed, and wireless communication is used to intelligently and flexibly control the anthropomorphic robotic arm and dexterous hand. Finally, the user is able to manage the anthropomorphic operation function in a stable and reliable manner. We also discussed the implementation and experimental evaluation of the system, showing that it is able to achieve improved performance and stability compared to traditional teleoperation control methods.

16.
Int J Biol Macromol ; 237: 123810, 2023 May 15.
Article En | MEDLINE | ID: mdl-36868333

Tumor cell-derived lactate has been recognized as the key driver of polarization in tumor-associated macrophages (TAMs). Intratumoral lactate can be transported into macrophages to fuel the TCA cycle, which is mediated by mitochondrial pyruvate carrier (MPC). At the heart of intracellular metabolism, MPC-mediated transport has been investigated in studies which suggested its role and importance in the process of TAMs polarization. However, previous studies relied on pharmacological inhibition instead of genetic approaches to evaluate the role of MPC in TAMs polarization. Here, we demonstrated that genetic depletion of MPC blocks the entry of lactate into mitochondria in macrophages. However, MPC-mediated metabolism was dispensable for IL-4/lactate-induced macrophages polarization as well as tumor growth. In addition, MPC depletion had no impact on hypoxia-inducible factor 1α (HIF-1α) stabilization and histone lactylation, both of which are required for TAMs polarization. Our study suggests that lactate itself, rather than its downstream metabolites, is responsible for TAMs polarization.


Lactic Acid , Monocarboxylic Acid Transporters , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Tumor-Associated Macrophages/metabolism , Mitochondria/metabolism , Histones/metabolism
17.
Bioact Mater ; 26: 88-101, 2023 Aug.
Article En | MEDLINE | ID: mdl-36875054

Skin wounds are a major medical challenge that threaten human health. Functional hydrogel dressings demonstrate great potential to promote wound healing. In this study, magnesium (Mg) and zinc (Zn) are introduced into methacrylate gelatin (GelMA) hydrogel via low-temperature magnetic stirring and photocuring, and their effects on skin wounds and the underlying mechanisms are investigated. Degradation testing confirmed that the GelMA/Mg/Zn hydrogel released magnesium ions (Mg2+) and zinc ions (Zn2+) in a sustained manner. The Mg2+ and Zn2+ not only enhanced the migration of human skin fibroblasts (HSFs) and human immortalized keratinocytes (HaCats), but also promoted the transformation of HSFs into myofibroblasts and accelerated the production and remodeling of extracellular matrix. Moreover, the GelMA/Mg/Zn hydrogel enhanced the healing of full-thickness skin defects in rats via accelerated collagen deposition, angiogenesis and skin wound re-epithelialization. We also identified the mechanisms through which GelMA/Mg/Zn hydrogel promoted wound healing: the Mg2+ promoted Zn2+ entry into HSFs and increased the concentration of Zn2+ in HSFs, which effectively induced HSFs to differentiate into myofibroblasts by activating the STAT3 signaling pathway. The synergistic effect of Mg2+ and Zn2+ promoted wound healing. In conclusion, our study provides a promising strategy for skin wounds regeneration.

18.
Front Genet ; 14: 1062052, 2023.
Article En | MEDLINE | ID: mdl-36861131

Recent studies have revealed that neural functions are involved in possibly every aspect of a cancer development, serving as bridges connecting microenvironmental stressors, activities of intracellular subsystems, and cell survival. Elucidation of the functional roles played by the neural system could provide the missing links in developing a systems-level understanding of cancer biology. However, the existing information is highly fragmented and scattered across the literature and internet databases, making it difficult for cancer researchers to use. We have conducted computational analyses of transcriptomic data of cancer tissues in TCGA and tissues of healthy organs in GTEx, aiming to demonstrate how the functional roles by the neural genes could be derived and what non-neural functions they are associated with, across different stages of 26 cancer types. Several novel discoveries are made, including i) the expressions of certain neural genes can predict the prognosis of a cancer patient; ii) cancer metastasis tends to involve specific neural functions; iii) cancers of low survival rates involve more neural interactions than those with high survival rates; iv) more malignant cancers involve more complex neural functions; and v) neural functions are probably induced to alleviate stresses and help the associated cancer cells to survive. A database, called NGC, is developed for organizing such derived neural functions and associations, along with gene expressions and functional annotations collected from public databases, aiming to provide an integrated and publicly available information resource to enable cancer researchers to take full advantage of the relevant information in their research, facilitated by tools provided by NGC.

19.
Front Cell Dev Biol ; 11: 1125723, 2023.
Article En | MEDLINE | ID: mdl-36923253

Pulmonary hypertension (PH) is a group of syndromes characterized by irreversible vascular remodeling and persistent elevation of pulmonary vascular resistance and pressure, leading to ultimately right heart failure and even death. Current therapeutic strategies mainly focus on symptoms alleviation by stimulating pulmonary vessel dilation. Unfortunately, the mechanism and interventional management of vascular remodeling are still yet unrevealed. Hypoxia plays a central role in the pathogenesis of PH and numerous studies have shown the relationship between PH and hypoxia-inducible factors family. EPAS1, known as hypoxia-inducible factor-2 alpha (HIF-2α), functions as a transcription factor participating in various cellular pathways. However, the detailed mechanism of EPAS1 has not been fully and systematically described. This article exhibited a comprehensive summary of EPAS1 including the molecular structure, biological function and regulatory network in PH and other relevant cardiovascular diseases, and furthermore, provided theoretical reference for the potential novel target for future PH intervention.

20.
J Transl Med ; 21(1): 8, 2023 01 09.
Article En | MEDLINE | ID: mdl-36617569

BACKGROUND: Astronauts undergo significant microgravity-induced bone loss during space missions, which has become one of the three major medical problems hindering human's long-term space flight. A risk-free and antiresorptive drug is urgently needed to prevent bone loss during space missions. D-mannose is a natural C-2 epimer of D-glucose and is abundant in cranberries. This study aimed to investigate the protective effects and potential mechanisms of D-mannose against bone loss under weightlessness. METHODS: The hind legs of tail-suspended (TS) rats were used to mimic weightlessness on Earth. Rats were administered D-mannose intragastrically. The osteoclastogenic and osteogenic capacity of D-mannose in vitro and in vivo was analyzed by micro-computed tomography, biomechanical assessment, bone histology, serum markers of bone metabolism, cell proliferation assay, quantitative polymerase chain reaction, and western blotting. RNA-seq transcriptomic analysis was performed to detect the underlying mechanisms of D-mannose in bone protection. RESULTS: The TS rats showed lower bone mineral density (BMD) and poorer bone morphological indices. D-mannose could improve BMD in TS rats. D-mannose inhibited osteoclast proliferation and fusion in vitro, without apparent effects on osteoblasts. RNA-seq transcriptomic analysis showed that D-mannose administration significantly inhibited the cell fusion molecule dendritic cell-specific transmembrane protein (DC-STAMP) and two indispensable transcription factors for osteoclast fusion (c-Fos and nuclear factor of activated T cells 1 [NFATc1]). Finally, TS rats tended to experience dysuria-related urinary tract infections (UTIs), which were suppressed by treatment with D-mannose. CONCLUSION: D-mannose protected against bone loss and UTIs in rats under weightlessness. The bone protective effects of D-mannose were mediated by inhibiting osteoclast cell fusion. Our findings provide a potential strategy to protect against bone loss and UTIs during space missions.


Bone Diseases, Metabolic , Bone Resorption , Weightlessness , Rats , Humans , Animals , Weightlessness/adverse effects , Mannose/pharmacology , Mannose/metabolism , X-Ray Microtomography , Osteoclasts , Bone Density , Bone Resorption/prevention & control , Bone Resorption/metabolism
...